Elementary Statistics
 Formulas

Elementary Statistics, Exam 1

Introduction to Statistics, Exploring Data with Tables and Graphs, Describing, Exploring, and Comparing Data

Range $=$ High - Low, $W=\frac{\text { Range }}{\# \text { of classes }} \rightarrow$ Always round up if a remainder.
The class width: $\mathbf{W}=\mathbf{U L}-\mathbf{L L}+\mathbf{1}=\mathbf{U B}-\mathbf{L B}=\mathbf{L L}$ of $\mathbf{2}^{\text {nd }}-\mathbf{L L}$ of $1^{\text {st }}$
The class midpoint : Midpoint $=\frac{U L+L L}{2}=\frac{U B+L B}{2}$
Relative Frequency $(\mathbf{R F})=f / n$

Mean: $\bar{x}=\frac{\sum x}{n}, \mu=\frac{\sum x}{N}$
Median: The middle value of ranked data
Mode: The value(s) that occur(s) with the greatest frequency.
Midrange: $\quad M r=\frac{M i n+M a x}{2}$

TI Calculator:
How to enter data:

1. Stat
2. Edit
3. ClrList L_{1}
4. Or Highlight \& Clear
5. Type in your data in $L 1$, ..

Mean, SD, 5-number summary
3. Select 1 for 1 variable
4. Type: L1 (second 1)
5. Scroll down for 5 -number summary

> Percentile $=$ $\frac{(\# \text { of values below } X)}{\text { total } \# \text { of values }} \cdot 100 \%$ L locator : $L=\frac{k}{100} \cdot n=\frac{P}{100} \cdot n$

Weighted Average: $\overline{\mathrm{x}}=\frac{w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}}{w_{1}+w_{2}+\cdots+w_{n}}=\frac{\sum w x}{\sum w}$
The linear correlation coefficient: $-1 \leq r \leq 1$

Variance

$\sigma^{2}=\frac{\sum(X-\mu)^{2}}{N}$
$s^{2}=\frac{n \sum X^{2}-\left(\sum X\right)^{2}}{n(n-1)}$

$$
s^{2}=\frac{\sum(X-\bar{X})^{2}}{n-1}
$$

Standard Deviation

$$
\sigma=\sqrt{\frac{\sum(x-\mu)^{2}}{N}} \quad Z \text {-Scores: }
$$

Grouped Data: \boldsymbol{m} is the Midpoint of a class
$\left.\mu=\frac{\sum m f}{N}, \sigma^{2}=\frac{\sum m^{2} f-\frac{\left(\sum m f\right)^{2}}{N}}{N} \Rightarrow \sigma=\sqrt{\frac{\sum m^{2} f}{N}-\mu^{2}}\right] O R: \bar{x}=\frac{\sum f \cdot x_{m}}{n}$
Chebyshev's Theorem: 1-1/k ${ }^{2}$

Coefficient of Variation

$$
C V=\frac{\sigma}{\mu} \cdot 100 \% \quad C V=\frac{s}{x} \cdot 100 \%
$$

Range $=\mathbf{M a x}-\operatorname{Min}$
Range Rule of Thumb :
$s \approx \frac{\text { Range }}{4} \& \bar{x} \pm 2 s$ OR $\boldsymbol{\mu} \pm \mathbf{2 \sigma}$
Unusual Values (Significantly low or high):
z scores ≤-2.00 or
z scores ≥ 2.00

Elementary Statistics, Exam 2

Probability

Discrete Probability Distribution

$$
n(s)=(\# \text { of outcomes })^{\# \text { of stages }}
$$

$0 \leq P(A) \leq 1, \sum P_{i}=1$
Impossible Set: $P(A)=0$
Sure (Certain) Set: $P(E)=1$
Complementary Events: $P(\bar{A})=1-P(A)$
$P(E)=\frac{n(E)}{n(S)}$
Conditional probability
Prob of A Given B: $P(A \mid B)=\frac{P(A \cap B)}{P(B)}, P(B) \neq 0$
$\operatorname{or} P(A)=\frac{s}{n}$
Prob of B Given A: $P(B \mid A)=\frac{P(A \cap B)}{P(A)} ; P(A) \neq 0$
The actual odds against event A: $O(\bar{A})=\frac{P(\bar{A})}{P(A)}$,
The actual odds in favor of event $\mathrm{A}: ~ \mathrm{O}(A)=\frac{P(A)}{P(\bar{A})}$
Payoff odds against event $A=\frac{\text { net profit }}{\text { amount bet }}$.
Addition Rule (Union): $P(A \cup B)=P(A)+P(B)-P(A$ and B)
A \& B are independent:
$P(A \cap B)=P(A) \cdot P(B)$
A \& B are Dependent:
$P(A$ and $B)=P(A) \cdot P(B \mid A)$
$=P(\mathrm{~B}) \cdot P(\mathrm{~A} \mid B)$
Disjoint (or mutually exclusive): $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0$
$P($ at least one occurrence of event $A)=1-P($ no occurrences of event $A)$

Factorial: $n!=n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1,0!=1$
Permutation: ${ }_{n} P_{r}=\frac{n!}{(n-r)!}$
Combination: $(n, r)=C_{r}^{n}={ }_{n} C_{r}=\frac{n!}{(n-r)!r!}$

TI Calculator:

Factorial

1. Enter the value of n
2. Press Math
3. Select PRB
4. Select ! \& Enter

TI Calculator:

Permutation / Combination

1. Enter the value of n
2. Press Math
3. Select PRB
4. Select $n P_{r}$, or $n C_{r}$
5. Enter the value of $\mathbf{r} \&$ Enter

Permutations Rule (When Some Items Are Identical to Others)

n_{1} are alike, n_{2} are alike, \ldots, and n_{k} are alike.

$$
\frac{n!}{n_{1}!\cdot n_{2}!\cdot \cdots n_{k}!}
$$

Parameters of a Probability Distribution:
Mean (Expected Value), Variance \& Standard
Deviation of D.R.V x:
Mean: $\mu=E(x)=\sum x \cdot P(x)$
Variance: $\sigma^{2}=\sum(x-\mu)^{2} p(x)=\sum\left[x^{2} \cdot P(x)\right]-\mu^{2}$
$\mathrm{SD}: \sigma=\sqrt{\sum(x-\mu)^{2} p(x)}=\sqrt{\sum x^{2} p(x)-\mu^{2}}$

$$
\begin{aligned}
& \text { Binomial Probability Distributions } \\
& p(x)=\frac{n!}{(n-x)!x!} p^{x} q^{n-x} \\
& \mu=n p \\
& \sigma=\sqrt{n p q}=\sqrt{n p(1-p)}
\end{aligned}
$$

Binomial Distribution

1. $2^{\text {nd }}+$ VARS
2. binompdf(
3. Enter: $\mathbf{n}, \mathrm{p}, \mathrm{x}$
4. Enter
5. If you enter n, p only
6. Gives all probabilities from 0 to n
7. If using Binomcdf(

8. Gives sum of the probabilities from 0 to x.

Elementary Statistics, Exam 3

Normal Probability Distribution

Estimating Parameters and Determining Sample Sizes

Normal Distribution

SND: 1) Bell-shaped, 2) $\mu=0$, 3) $\sigma=1$
Normal to SND: $\mathrm{z}=\frac{x-\mu}{\sigma}$

TI Calculator:
Normal Distribution Area

1. $2^{\text {nd }}+$ VARS
2. normalcdf(
3. 4 entries required
4. Left bound, Right bound, value of the Mean, Standard deviation

5. Enter

6. For $-\infty$, use -1000
7. For ∞, use 1000

TI Calculator:

Normal Distribution: find
the Z-score

1. $2^{\text {nd }}+$ VARS
2. invNorm(
3. 3 entries required
4. Left Area, value of the Mean, Standard deviation
5. Enter

The Central Theorem:

1. The distribution of sample \bar{x} will, as the sample size increases, approach a normal distribution.
2. $\mu_{\bar{x}}=\mu$.
3. $\sigma_{\bar{x}}=\sigma / \sqrt{n}$
4. $\mathrm{z}=\frac{\bar{x}-\mu_{\bar{x}}}{\sigma_{\bar{x}}}=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$

Normal as Approximation to Binomial Requirements

1. The sample is a simple random sample with n independent trials of a binomial experiment with the probability of success
is $p . p \rightarrow q=1-p$
2. $n p \geq 5$ and $n q \geq 5$.

Normal Approximation: $\mu=n p \& \sigma=\sqrt{n p q}$
Continuity Correction:
Adjust the discrete whole number x by using a continuity correction Factor: 0.5

The margin of error (maximum error of the estimate): E
Sample proportion: $\hat{p}=\frac{x}{n}(\operatorname{read} p$ "hat")
$\hat{q}=1-\hat{p}$
The population proportion $p=\frac{X}{N}$

Point estimate of $p:$	$\hat{p}=\frac{U C L+L C L}{2}$,	UCL: Upper Confidence Limit
Margin of error:	$E=\frac{U C L-L C L}{2}$,	LCL: Lower Confidence Limit

Confidence Interval for Estimating a Population Proportion \boldsymbol{p}

$\hat{p} \pm E$
$\hat{p}-E<p<\hat{p}+E \quad E=z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}$
$\hat{p}-z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}<p<\hat{p}+z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}$

Determining the Sample Size:

4. Enter: x, n \& CL

Point estimate of $\boldsymbol{\mu}: \bar{x}=\frac{U C L+L C L}{2}$, UCL: Upper Confidence Limit
Margin of error: $\quad E=\frac{U C L-L C L}{2}$, LCL: Lower Confidence Limit
Confidence Interval for Estimating a Population Mean with $\boldsymbol{\sigma}$ Known
$E=z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right) \quad C I: \bar{x} \pm E \rightarrow \quad \bar{x}-z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)<\mu<\bar{x}+z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)$
Determine the sample size n for a population mean $\mu: n=\left(\frac{z_{\alpha / 2} \cdot \sigma}{E}\right)^{2}$

Confidence Interval for Estimating a Population Mean with σ unknown

$$
E=t_{\alpha / 2}\left(\frac{s}{\sqrt{n}}\right)\left(\bar{x}-t_{\alpha / 2}\left(\frac{s}{\sqrt{n}}\right)<\mu<\bar{x}+t_{\alpha / 2}\left(\frac{s}{\sqrt{n}}\right)\right.
$$

Confidence Interval for Estimating a Population Standard Deviation or Vanianee -

$\sqrt{\frac{(n-1) s^{2}}{\chi_{\text {right }}^{2}}}<\sigma<\sqrt{\frac{(n-1) s^{2}}{\chi_{\text {left }}^{2}}}$

TI Calculator How to enter data:

1. Stat

How to enter data: Mean, SD, 5-number summary

1. Stat
2. Calc
3. Select 1 for 1 variable
4. Type: L1 (second 1)
5. Or Highlight \& Clear
6. Type in your data in L1, ..
7. Scroll down for 5number summary

EIntix wal

TI Calculator:
T- Distribution: find the t-score

1. $2^{\text {nd }}+$ VARS
2. invT(
3. 2 entries (Left Area,df)
4. Enter

TI Calculator:
T- interval

1. Stat
2. Tests
3. T-Interval
4. Enter Data or Stats ($\overline{\boldsymbol{x}}, s \& \mathrm{CL}$)
5. Enter

Elementary Statistics, Exam 4

Hypothesis Testing
 Inferences from Two Samples

$$
\hat{p}=\frac{x}{n} \rightarrow x=n \hat{p}, \mu=n p, \sigma=\sqrt{n p q}
$$

Parameter	Sampling Distribution	Requirements	Test Statistics
Proportion: \mathbf{p}	Normal (Z)	$n p \geq 5, \& n q \geq 5$	$Z=\frac{\hat{p}-p}{\sqrt{p q / n}}$
Mean: $\boldsymbol{\mu}$	t	$\boldsymbol{\sigma}$ not known \& Normally Distributed Population or $n>30$	$t=\frac{\bar{x}-\mu}{s / \sqrt{n}}$
Mean: $\boldsymbol{\mu}$	Normal (Z)	$\boldsymbol{\sigma}$ known \& Normally Distributed Population or $n>30$	$Z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$
Standard Deviation: $\boldsymbol{\sigma}$ Or Variance: $\boldsymbol{\sigma}^{\mathbf{2}}$	$\chi^{\mathbf{2}}$	Normally Distributed Population	$\chi^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}$

Step 1: H_{0}, H_{1}, claim \& Tails Step 2: TS Calculate (TS)
Step 3: CV using α
Step 4: Make the decision to
a. Reject or not H_{0}
b. The claim is true or false
c. Restate this decision: There is / is not sufficient evidence to support the claim that...

TI Calculator: Mean: T - Test 1. Stat 2. Tests 3. \mathbf{T} - Test 4. Enter Data or Stats ($\mathbf{p}, \mathbf{x}, \mathbf{n}$) 5. Choose RTT, LTT, or 2TT 6. Calculate
TI Calculator: Mean: Z - Test 1. Stat 2. Tests 3. Z - Test 4. Enter Data or Stats ($\mathbf{p}, \mathbf{x}, \mathbf{n}$) 5. Choose RTT, LTT, or 2TT 6. Calculate

TI Calculator:
Mean: T - Test
2. Tests
3. $\mathbf{T}-$ Test
4. Enter Data or Stats (p, x, n)
6. Calculate

TI Calculator:
Mean: Z - Test

1. Stat
2. Z - Test
3. Choose RTT, LTT, or 2TT
4. Calculate

TI Calculator:
1-Proportion Z - test

1. Stat
2. Tests
3. 1-PropZTest
4. Enter Data or Stats ($\mathbf{p}, \mathbf{x}, \mathbf{n}$)
5. Choose RTT, LTT, or 2TT

Inferences about 2 Proportions

$$
T S: z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\bar{p} \bar{q}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \text { Or } \frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{\bar{p} \bar{q}}{n_{1}}+\frac{\bar{p} \bar{q}}{n_{2}}}}
$$

$$
\begin{aligned}
& \hat{p}_{1}=\frac{x_{1}}{n_{1}}, \hat{q}_{1}=1-\hat{p}_{1} \\
& \hat{p}_{2}=\frac{x_{2}}{n_{2}}, \hat{q}_{2}=1-\hat{p}_{2}
\end{aligned}
$$

Pooled Sample Proportion :

$$
\bar{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}, \bar{q}=1-\bar{p}
$$

TI	Calculator:
2 -	Proportion $\mathrm{Z}-$ test
1.	Stat
2.	Tests
3.	2 - PropZTest
4.	Enter Data or Stats
$n_{1}, n_{2}, x_{1}, x_{2}$	
5.	Choose RTT, LTT,
or 2TT	

-Fromesnt

Confidence Interval Estimate of $\boldsymbol{p}_{\mathbf{1}} \boldsymbol{-} \boldsymbol{p}_{\mathbf{2}}$

$$
\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm E
$$

$\left(\hat{p}_{1}-\hat{p}_{2}\right)-z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}<p_{1}-p_{2}<\left(\hat{p}_{1}-\hat{p}_{2}\right)+z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1}}{n_{1}} \hat{q}_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}$

TI Calculator:
Confidence Interval: 2 proportion

1. Stat
2. Tests
3. 2-prop ZINT
4. Enter: $n_{1}, n_{2}, x_{1}, x_{2} \& C L$

The P-value method and the critical value method are equivalent, but the confidence interval method is not equivalent to the P-value method or the critical value method.

Inferences about 2 Means: Independent Samples

1. The two samples are independent. 2. Both samples are simple random samples. 3. Either or both of these conditions are satisfied: The two sample sizes are both large (with $n_{1}>30$ and $n_{2}>30$) or both samples come from populations having normal distributions.
σ_{1} and σ_{2} are known: Use the z test for comparing two means from independent populations
$T S: z=\frac{\left(\overline{x_{1}}-\overline{x_{2}}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \operatorname{Or} z=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}$
Confidence Interval:
$E=z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
σ_{1} and $\sigma_{\mathbf{2}}$ are unknown: Use the t test for comparing two means from independent populations

Equal Variances :

$$
\sigma_{1}=\sigma_{2}
$$

Pool the Sample Variances
$\mathrm{df}=n_{1}-1+n_{2}-1$

$$
T S: t=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{s_{p}^{2}}{n_{1}}+\frac{s_{p}^{2}}{n_{2}}}}
$$

$$
\begin{aligned}
& s_{p}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)} \\
& E=t_{\alpha / 2} \sqrt{\frac{s_{p}^{2}}{n_{1}}+\frac{s_{p}^{2}}{n_{2}}}
\end{aligned}
$$

TI Calculator:
2- Sample T-test

1. Stat
2. Tests
3. 2 - SampTTest
4. Enter Data or Stats
$\overline{x_{1}}, s_{1}, n_{1}, \overline{x_{2}}$

$$
n_{1}, s_{2}
$$

5. Choose RTT, LTT, or 2TT
6. Pooled: No / Yes
7. Calculate

2-Sample Z - test

1. Stat
2. Tests
3. 2-SampZTest
4. Enter Data or Stats $\sigma_{1}, \sigma_{2}, \overline{x_{1}}, n_{1}, \overline{x_{2}}$ n_{1}, n_{2},
5. Choose RTT, LTT, or 2TT
6. Calculate

TI Calculator:
2-Sample Z - Interval

1. Stat
2. Tests
3. 2-SampZInt
4. Enter Data or Stats
$\sigma_{1}, \sigma_{2}, \overline{x_{1}}, n_{1}, \overline{x_{2}}$
n_{1}, n_{2},
5. Choose RTT, LTT, or

TI Calculator:
2-Sample T-Interval

1. Stat
2. Tests
3. 2 - SampTInt
4. Enter Data or Stats $\overline{x_{1}}, s_{1}, n_{1}, \overline{x_{2}}$ n_{1}, s_{2},
5. Choose RTT, LTT, or 2TT
6. Pooled: No / Yes
7. Calculate

2TT
0. Caiculate

Inferences about 2 Means: Dependent Samples (Matched Pairs)

The data consist of matched pairs (matched according to some relationship, such as before/after measurements from the same subjects)

- $d=$ individual difference between the two values in a single matched pair
- $\mu_{d}=$ mean value of the differences d for the population of all matched pairs of data
- $\bar{d}=$ mean value of the differences d for the paired sample data
- $s_{d}=$ standard deviation of the differences d for the paired sample data
- $n=$ number of pairs of sample data

$$
\text { d.f. }=n-1
$$

Use either d or D :

$$
s_{d}=\sqrt{\frac{\sum(d-\bar{d})^{2}}{n-1}}
$$

$$
\bar{D}=\frac{\sum D}{n} \text { Or } \bar{d}=\frac{\sum d}{n}=\sqrt{\frac{n \sum d^{2}-\left(\sum d\right)^{2}}{n(n-1)}}
$$

TI Calculator:

T- interval

1. Tests
2. T-Interval
3. Data
4. Enter $\boldsymbol{\mu}_{\mathbf{0}}=\mathbf{0}$, List: L_{3}, Freq:1
5. Calculate

Confidence Interval:

$\bar{d} \pm E$ or $\bar{D} \pm E \rightarrow$

$$
E=t_{\alpha / 2} \frac{s_{d}}{\sqrt{n}}
$$

$T S: t=\frac{\bar{d}-\mu_{d}}{s_{d} / \sqrt{n}}$

TI Calculator:
How to enter data:

1. Stat
2. Edit
3. ClrList $L_{1} \& L_{2}$
4. Type in your data in $L_{1} \& L_{2}$
5. $L_{1}-L_{2}$
6. Store in L_{3}
7. Enter

Mean, SD, 5-number summary

1. Stat
2. Calc
3. Select 1 for 1 variable
4. Type: L3 (second 3)
5. Calculate

Inferences about 2 variances or standard deviations:
The F test should not be confused with the chisquare test, which compares a single sample variance to a specific population variance. The larger of the two variances is placed in the numerator regardless of the subscripts. The F test has two terms for the degrees of freedom: that of the numerator, $n_{1}-1$, and that of the denominator, $n_{2}-1$, where n_{1} is the sample size from which the larger variance was obtained.
Test Statistic: $F=\frac{s_{1}^{2}}{s_{2}^{2}}$

[^0]

Finding P-Value

\boldsymbol{P}-value = probability of a test statistic at least as extreme as the one obtained $\boldsymbol{p}=$ population proportion \hat{p} :Sample Proportion

Elementary Statistics: Correlation \& Regression

The linear correlation coefficient \boldsymbol{r}, is a number that measures how well paired sample data fit a straight-line pattern when graphed. The value of r^{2} is the proportion of the variation in y that is explained by the linear relationship between x and y. (The linear correlation coefficient: $\mathbf{- 1} \leq r \leq 1$)

TI Calculator: How to enter data:

1. Stat
2. Edit
3. ClrList $L_{1} \& L_{2}$
4. Type in your data in $L_{1} \& L_{2}$

z_{x} denotes the z score for an individual sample value x z_{y} is the z score for the corresponding sample value y.

Regression Line:

Given a collection of paired sample data, the regression line (or line of best fit, or least-squares line) is the straight line that "best" fits the scatterplot of the data.
No significant linear correlation \rightarrow The best predicted y-value is \bar{y}.
Significant linear correlation \rightarrow The best predicted y-value is found by Plugging x-value into the regression equation.
Regression Line:

$$
y=b_{0}+b_{1} x,
$$

$$
\text { Slope }: b_{1}=\frac{n \sum x y-\sum x \sum y}{n \sum x^{2}-\left(\sum x\right)^{2}}
$$

$$
Y \text {-int ercept }: b_{0}=\bar{y}-b_{1} \bar{x}
$$

$$
\bar{y}=\frac{\sum y}{n}, \bar{x}=\frac{\sum x}{n}
$$

Test of Hypothesis:
Step 1: $\boldsymbol{H}_{0}: \rho=0, \boldsymbol{H}_{1}: \rho \neq 0$ claim \& Tails
Step 2: TS: $t=r \sqrt{\frac{n-2}{1-r^{2}}}$, OR: r
Step 3: CV using α From the T-table or Correlation (r-table) Step 4: Make the decision to a. Reject or not \boldsymbol{H}_{0}
b. The claim is true or false
c. Restate this decision: There is / is not sufficient evidence to support the claim that...

There is a linear Correlation If $|r|$ \geq critical value

There is No Correlation If $|r|<$ critical value
$T S: t=r \sqrt{\frac{n-2}{1-r^{2}}}, d f=n-2$
Or $: r$

TI Calculator:
Scatter Plot:

1. Press on Y \& clear
2. $2^{\text {nd }} \mathbf{y}$, Enter
3. On, Enter
4. Select X1-list: L_{1}
5. Select Y1-list: L_{2}
6. Mark: Select Character
7. Press Zoom \& 9 to get ZoomStat

TI Calculator:

Linear Regression - test

1. Stat
2. Tests
3. LinRegTTest
4. Enter $L_{1} \& L_{2}$
5. Freq $=1$
6. Choose \neq
7. Calculate

Elementary Statistics, Goodness-of-Fit and Contingency Tables

By "goodness-of-fit" we mean that sample data consisting of observed frequency counts arranged in a single row or column (called a one-way frequency table) agree with some particular distribution (such as normal or uniform) being considered.
Definition: A Multinomial Experiment is an experiment that meets the following conditions:

1. The number of trials is fixed.
2. The trials are independent
3. All outcomes of each trial must be classified into exactly one of several different categories.
4. The probabilities for the different categories remain constant for each trial.

The data is randomly selected, sample data consist of frequency counts for all categories \& $\boldsymbol{E}(\boldsymbol{x}) \geq 5$ H_{0} : The frequency counts agree with the claimed distribution.
H_{1} : The frequency counts do not agree with the claimed distribution. RTT

Contingency Table: A contingency table (or two-way frequency table) is a table consisting of frequency counts of categorical data corresponding to two different variables. (One variable is used to categorize rows, and a second variable is used to categorize columns.)
Test of Independence (of variables):
The test of independence of variables is used to determine whether two variables are independent of or related to each other when a single sample is selected

Chi-Square Test of Homogeneity: (Test of test of homogeneity of proportions)
The test of homogeneity of proportions is used to determine whether the proportions for a variable are equal when several samples are selected from different populations.)
Instead of testing the null hypothesis of independence between the row and column variables, we test the null hypothesis that the different populations have the same proportion of some characteristic.

1. The data are obtained from a random sample.
2. The expected frequency for each category must be 5 or more.
H_{0} : The row and column variables are independent. (There is no relationship between two variables.)
H_{1} : The row and column variables are dependent. (There is a relationship between two variables.)

Test Statistic:

$d f=k-1$
$\mathrm{O}=$ observed frequency
$\mathrm{E}=$ expected frequency

TI Calculator: Enter data:

1. Stat
2. Edit
3. ClrList $L_{1} \& L_{2}$
4. $\mathrm{O} \rightarrow L_{1} \& E \rightarrow L_{2}$

TI Calculator:
Goodness of Fit - test

1. Stat
2. Tests
3. χ^{2} GOF-Test
4. Enter $L_{1} \& L_{2}$
5. $\mathbf{d f}=\mathbf{n}-1$
6. Calculate

TI Calculator:

Contingency Table

1. Access Matrix ($2^{\text {nd }} \boldsymbol{\&}$ Press x^{-1})
2. Edit, Enter Dimensions \& cell entries
3. Stat
4. Tests
5. $\chi^{2}-$ Test
6. Observed Matrix must be A
7. Calculate

Elementary Statistics: Analysis of Variance One-Way ANOVA

One-way analysis of variance (ANOVA) is used for tests of hypotheses that three or more populations have means that are all equal, as in

$$
H_{0}: \mu_{1}=\mu_{2}=\mu_{3} \quad \text { by analyzing sample }
$$

variances. One-way analysis of variance is used with data categorized with one factor (or treatment), so there is one characteristic used to separate the sample data into the different categories.
In the F test, two different estimates of the population variance are made.
The first estimate is called the between-group variance, and it involves finding the variance of the means.
The second estimate, the within-group variance, is made by computing the variance using all the data and is not affected by differences in the means.
If there is no difference in the means, the between-group variance will be approximately equal to the within-group variance, and the F test value will be close to $1 ;$ do not reject null hypothesis.
However, when the means differ significantly, the between-group variance will be much larger than the within-group variance; the F test will be significantly greater than 1; reject null hypothesis.

Given:

Number of Groups (Factors): k Number of data in each group: n Total sample size: $N=k(n)$

Given the means of each group:
Calculate their mean and variance:
$\bar{x}=\frac{\sum x}{k}$
$s_{\bar{x}}^{2}=\frac{\sum(x-\bar{x})^{2}}{k-1}=$
$S_{B}=\sigma_{\bar{x}}=\sigma / \sqrt{n} \rightarrow$ Estimate $: \sigma^{2}=n s_{\bar{x}}^{2}$
s_{W}^{2} OR $s_{p}^{2}=\frac{S_{1}^{2}+S_{2}^{2}+S_{3}^{2}}{k}$
$T S: F=\frac{s_{B}^{2}}{s_{W}^{2}}$

ANDWA(L1, Lz, Lz)

TI Calculator:

One Way ANOVA

1. ClrList L_{1}, L_{2}, \ldots
2. Enter data L_{1}, L_{2}, ..
3. Stat
4. Tests
5. ANOVA $\left(L_{1}, L_{2}, \ldots\right)$
6. Enter

[^0]: TI Calculator:
 Matched pair: T - Test

 1. Tests
 2. $\mathbf{T}-$ Test
 3. Data
 4. Enter $\mu_{0}=0$, List: L_{3},

 Freq:1
 5. Choose RTT, LTT, or 2TT
 6. Calculate

