Elementary Statistics

Formulas

Introduction to Statistics, Exploring Data with Tables and Graphs, Describing, Exploring, and Comparing Data

$$Range = High - Low , W = \frac{Range}{\# of classes} \rightarrow Always round up if a remainder.$$
The class width: W = UL - LL + 1 = UB - LB = LL of 2nd - LL of 1st
The class midpoint : Midpoint = $\frac{UL + LL}{2} = \frac{UB + LB}{2}$
Relative Frequency (RF) = f/n
Mean: $\bar{x} = \frac{\sum x}{n}, \mu = \frac{\sum X}{N}$
Median: The middle value of ranked data
Mode: The value(s) that occur(s)
with the greatest frequency.
Min+Max
Mathematical Mathem

Midrange: $Mr = \frac{\dot{M}in + Max}{2}$

Weighted Average:
$$\bar{x} = \frac{w_1 x_1 + w_2 x_2 + \dots + w_n x_n}{w_1 + w_2 + \dots + w_n} = \frac{\sum w x_n}{\sum w}$$

2

The linear correlation coefficient: $-1 \le r \le 1$

TI Calculator: How to enter data:

 $L = \frac{k}{100} \cdot n = \frac{P}{100} \cdot n$

Probability Discrete Probability Distribution	$n(s) = (\# of outcomes)^{\# of stages}$			
$0 \le P(A) \le 1, \sum P_i = 1$	n(E)	Conditional probabil	ity	
Impossible Set: $P(A) = 0$	$P(E) = \frac{n(E)}{n(S)}$	-		
Sure (Certain) Set: $P(E) = 1$	$orP(A) = \frac{s}{-1}$	Prob of A Given B: I	$P(A B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$	
Complementary Events: $P(\overline{A}) = 1 - P(A)$	orP(A) = - n	Prob of B Given A:	$P(B A) = \frac{P(A \cap B)}{P(A)}; P(A) \neq 0$	
The actual odds against event A: $O(\bar{A}) = \frac{P(\bar{A})}{P(A)}$,			- ()	
			A & B are independent:	
The actual odds in favor of event A: $O(A) = \frac{P(A)}{P(\overline{A})}$			$P(A \cap B) = P(A) \cdot P(B)$	
Payoff odds against event $A = \frac{\text{net profit}}{\text{amount bet}}$.			A & B are Dependent:	
			$P(A \text{ and } B) = P(A) \cdot P(B A)$	
Addition Rule (Union): $P(A \cup B) = P(A) + P(B) - P(A \text{ and } B)$			$= P(B) \cdot P(A B)$	
Disjoint (or mutually exclusive):				

P(at least one occurrence of event A) = 1 - P(no occurrences of event A)

Factorial:
$$n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1, 0! = 1$$

Permutation: ${}_{n}P_{r} = \frac{n!}{(n-r)!}$
Combination: $(n,r) = C_{r}^{n} = {}_{n}C_{r} = \frac{n!}{(n-r)!r!}$
Permutations Rule (When Some Items Are Identical to Others)
 n_{1} are alike, n_{2} are alike, ..., and n_{k} are alike.
 $\frac{n!}{n_{1}! \cdot n_{2}! \cdots n_{k}!}$
Parameters of a Probability Distribution:
Mean (Expected Value), Variance & Standard Deviation of D.R.V x:
Mean: $\mu = E(x) = \sum x \cdot P(x)$
Variance: $\sigma^{2} = \sum (x-\mu)^{2} p(x) = \sum [x^{2} \cdot P(x)] - \mu^{2}$
SD: $\sigma = \sqrt{\sum (x-\mu)^{2} p(x)} = \sqrt{\sum x^{2} p(x) - \mu^{2}}$
The contract of the probabilities from 0 to x.
The contract of the probabilities from 0 to x.
The contract of the probabilities from 0 to x.
The contract of the probabilities from 0 to x.
The contract of the probabilities from 0 to x.
The contract of the probabilities from 0 to x.
The contract of the probabilities from 0 to x.
The contract of the probabilities from 0 to x.
The contract of the probabilities from 0 to x.
The contract of the probabilities from 0 to x.
The contract of the probabilities from 0 to x.

Normal Probability Distribution

Estimating Parameters and Determining Sample Sizes

Normal Distribution

SND: 1) Bell-shaped, 2) $\mu = 0, 3$) $\sigma = 1$ Normal to SND: $z = \frac{x-\mu}{\sigma}$

TI Calculator:

Normal Distribution Area

- 1. $2^{nd} + VARS$
- 2. normalcdf(
- 3. 4 entries required
- 4. Left bound, Right bound, value of the Mean, Standard deviation
- 5. Enter
- 6. For $-\infty$, *use* -1000
- 7. For ∞ , use 1000

normalcdf
lower:0
upper:
μ:0
σ:1
Paste

TI Calculator: Normal Distribution: find the Z-score 1. 2nd + VARS 2. invNorm(3. 3 entries required

- 4. Left Area, value of the Mean, Standard deviation
- 5. Enter

The Central Theorem:

1. The distribution of sample \bar{x} will, as the sample size increases, approach a normal distribution.

2.
$$\mu_{\bar{x}} = \mu$$
.
3. $\sigma_{\bar{x}} = \sigma / \sqrt{n}$
4. $z = \frac{\bar{x} - \mu_{\bar{x}}}{\sigma_{\bar{x}}} = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$

Normal as Approximation to Binomial Requirements

- 1. The sample is a simple random sample with *n* independent trials of a binomial experiment with the probability of success is $p. p \rightarrow q = 1 - p$
- 2. $np \ge 5$ and $nq \ge 5$.

0

Normal Approximation: $\mu = np \& \sigma = \sqrt{npq}$

Continuity Correction:

Adjust the discrete whole number *x* by using a **continuity correction Factor: 0.5**

	The margin of error (maximum error of the estimate): <i>E</i>				
	Sample proportion: $\hat{p} = \frac{x}{n}$ (read p "hat")				
	$\hat{q} = 1 - \hat{p}$				
	The population proportion $p = \frac{X}{N}$				
Point estimate of <i>p</i> :	$\hat{p} = \frac{UCL + LCL}{2}, \qquad UCL: Upper Confidence Limit$				
Margin of error:	$E = \frac{UCL - LCL}{2}$, LCL: Lower Confidence Limit				
Confidence Interval for Estimating a Population Proportion <i>p</i>					
$ \hat{p} \pm E \\ \hat{p} - E E = z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}} \hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}}$					
TI Calculator: Image: Confidence Interval: proportion Image: Confidence Interval: 1. Stat Image: Confidence Interval: 2. Tests Image: Confidence Interval:					
3. 1-prop ZINT 4. Enter: <i>x, n</i> & CL	$n = \frac{(z_{\alpha/2})^2 \hat{p}\hat{q}}{E^2}$ When no estimate of \hat{p} is known: $\hat{p} = \hat{q} = 0.5 \rightarrow$ $n = \frac{(z_{\alpha/2})^2 0.25}{E^2}$				

Hypothesis Testing Inferences from Two Samples

$$\hat{p} = \frac{x}{n} \rightarrow x = n\hat{p}, \mu = np, \sigma = \sqrt{npq}$$

			C. Restate		
Parameter	Sampling Distribution	Requirements	Test Statistics	not sufficie the claim th	
Proportion: p	Normal (Z)	$np \ge 5, \& nq \ge 5$	$Z = \frac{\hat{p} - p}{\sqrt{pq/n}}$	TI Calculator: Mean: T – Test 1. Stat 2. Tests 3. T – Test 4. Enter Data or 5. Choose RTT, 6. Calculate	
Mean: µ	t	σ not known & Normally Distributed Population or n > 30	$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$		
Mean: µ	Normal (Z)	σ known & Normally Distributed Population or n > 30	$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$	TI Calculator: Mean: Z – Test 1. Stat 2. Tests	
Standard Deviation: σ Or Variance: σ^2	χ^2	Normally Distributed Population	$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$	 Z - Test Enter Data or Choose RTT, Calculate 	

Step 1: H_0 , H_1 , claim & Tails Step 2: TS Calculate (TS) Step 3: CV using α Step 4: Make the decision to a. Reject or not H_0 b. The claim is true or false c. Restate this decision: There is / is not sufficient evidence to support the claim that...

TI Calculator:	1
Mean: T - Test 1. Stat 2. Tests 3. T - Test 4. Enter Data or Stats (p, x, n) 5. Choose RTT, LTT, or 2TT 6. Calculate	 3. 1 – PropZTest 4. Enter Data or Stats
TI Calculator: Mean: Z - Test1. Stat2. Tests3. Z - Test4. Enter Data or Stats (p, x, n)5. Choose RTT, LTT, or 2TT6. Calculate	(p, x, n) 5. Choose RTT, LTT, or 2TT

The *P*-value method and the critical value method are equivalent, but the confidence interval method is **not** equivalent to the *P*-value method or the critical value method.

Inferences about 2 Means: Independent Samples

TI Calculator: 2 - Sample Z - test

3. 2 - SampZTest 4. Enter Data or Stats $\sigma_1, \sigma_2, \overline{x_1}, n_1, \overline{x_2}$

 $n_1, n_2,$

Tests

2 - SampZInt
 Enter Data or Stats

1. Stat

2. Tests

2.

1. The two samples are **independent.** 2. Both samples are **simple random samples**. 3. Either or both of these conditions are satisfied: The two sample sizes are both **large** (with $n_1 > 30$ and $n_2 > 30$) or both samples come from populations having normal distributions.

 σ_1 and σ_2 are known: Use the *z* test for comparing two means from independent populations

$$TS: z = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \text{ Or } z = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \text{ Confidence Interval:} \qquad E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \text{ Confidence Interval:}$$

 σ_1 and σ_2 are unknown: Use the *t test* for comparing two means from independent populations

$$\begin{array}{c} \textbf{Unequal Variances: } \sigma_{1} \neq \sigma_{2} \\ \text{df} = \text{ smaller of } n_{1} - 1 \text{ or } n_{2} - 1 \end{array} \\ \hline \textbf{TS} : t = \frac{\overline{x_{1} - \overline{x_{2}}}}{\sqrt{\frac{s_{1}^{2}}{n_{1}^{2} + \frac{s_{2}^{2}}{n_{2}^{2}}}} \\ \hline \textbf{E} = t_{\alpha/2} \sqrt{\frac{s_{1}^{2}}{n_{1}^{2} + \frac{s_{2}^{2}}{n_{1}^{2} + \frac{s_{2}^{2}}{n_{2}^{2}}}}} \\ \hline \textbf{E} = t_{\alpha/2} \sqrt{\frac{s_{1}^{2}}{n_{1}^{2} + \frac{s_{2}^{2}}{n_{2}^{2}}}} \\ \hline \textbf{E} = t_{\alpha/2} \sqrt{\frac{s_$$

Inferences about 2 Means: Dependent Samples (Matched Pairs)

 $TS: t = \frac{d - \mu_d}{d}$

The data consist of **matched pairs** (matched according to some relationship, such as before/after measurements from the same subjects)

- d = individual difference between the two values in a single matched pair
- μ_d = mean value of the differences *d* for the **population** of all matched pairs of data
- d = mean value of the differences d for the paired sample data
- s_d = standard deviation of the differences d for the paired **sample** data
- n = number of **pairs** of sample data

d.f. =
$$n-1$$

Use either d or D:
 $\overline{D} = \frac{\sum D}{n}$ Or $\overline{d} = \frac{\sum d}{n}$
 $r = \frac{\sum d}{n}$ Or $\overline{d} = \frac{\sum d}{n}$
 $r = \sqrt{\frac{n\sum d^2 - (\sum d)^2}{n(n-1)}}$
TI Calculator:
T- interval
1. Tests
2. T- Interval

 $E = t_{\alpha/2} \, \frac{s_d}{\sqrt{n}}$

3. Data

5. Calculate

TI Calculator: How to enter data: 1. Stat 2. Edit 3. ClrList $L_1 \& L_2$ 4. Type in your data in $L_1 \& L_2$ 5. $L_1 - L_2$ 6. Store in L_3 7. Enter

Mean, SD, 5-number summary

- 1. Stat
- 2. Calc
- 3. Select 1 for 1 variable

TI Calculator:

Freq:1

6. Calculate

Tests
 T - Test
 Data

Matched pair: T – Test

4. Enter $\mu_0 = 0$, List: L_3 ,

5. Choose RTT, LTT, or 2TT

- 4. Type: L3 (second 3)
- 5. Calculate

Inferences about 2 variances or standard deviations:

The *F* test should not be confused with the chisquare test, which compares a single sample variance to a specific population variance. **The larger of the two variances is placed in the numerator regardless of the subscripts.** The *F* test has two terms for the degrees of freedom: that of the numerator, $n_1 - 1$, and that of the denominator, $n_2 - 1$, where n_1 is the sample size from which the larger variance was obtained.

Test Statistic: $F = \frac{s_1^2}{s_2^2}$

Finding *P*-Value

*P***-value** = probability of a test statistic at least as extreme as the one obtained p = population proportion \hat{p} : *Sample Proportion*

Elementary Statistics: Correlation & Regression

TI Calculator: How to enter data: 1. Stat The **linear correlation coefficient** r, is a number that measures how well paired sample data fit a 2. Edit straight-line pattern when graphed. The value of r^2 is the proportion of the variation in y that is ClrList $L_1 \& L_2$ Type in your data in $L_1 \& L_2$ explained by the linear relationship between x and y. (The linear correlation coefficient: $-1 \le r \le 1$) **TI Calculator: Scatter Plot: Test of Hypothesis:** $r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{\left[n(\sum x^2) - (\sum x)^2\right] \left[n(\sum y^2) - (\sum y)^2\right]}}, Or: r = \frac{\sum (Z_x Z_y)}{n-1}$ 1. Press on Y & clear Step 1: $H_0: \rho = 0, H_1: \rho \neq 0$ claim 2. 2nd y, Enter & Tails 3. On, Enter **Step 2: TS:** $t = r \sqrt{\frac{n-2}{1-r^2}}$, **OR:** *r* 4. Select X1-list: L₁ Select Y1-list: L₂ **Step 3:** CV using *α From the* 6. Mark: Select *T-table or Correlation (r-table)* z_x denotes the z score for an individual sample value x Character **Step 4: Make the decision to** a. Reject or not H_0 7. Press Zoom & 9 to get z_v is the z score for the corresponding sample value y. b. The claim is true or false ZoomStat c. Restate this decision: There is / **Regression Line: Regression Line**: is not sufficient evidence to **TI Calculator:** Given a collection of paired sample data, the support the claim that... **Linear Regression - test** $y = b_0 + b_1 x$, regression line (or line of best fit, or least-squares 1. Stat There is a linear Correlation If |r|2. Tests line) is the straight line that "best" fits the scatterplot $Slope: b_1 = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$ \geq critical value 3. LinRegTTest of the data. 4. Enter $L_1 \& L_2$ There is No Correlation If |r| <**No significant linear correlation** \rightarrow The best critical value 5. Freq = 1 $Y - \text{int } ercept : b_0 = \overline{y} - b_1 \overline{x}$ predicted y-value is \overline{y} . 6. Choose \neq $TS: t = r_{\sqrt{\frac{n-2}{1-r^2}}}, df = n-2$ 7. Calculate **Significant linear correlation** \rightarrow The best predicted $\overline{y} = \frac{\sum y}{x}, \overline{x} = \frac{\sum x}{x}$ y-value is found by Plugging x-value into the regression equation. Or:r

Elementary Statistics, Goodness-of-Fit and Contingency Tables

Elementary Statistics: Analysis of Variance One-Way ANOVA

One-way analysis of variance (ANOVA) is used for tests of hypotheses that **three or more populations have means** that are all equal, as in

 $H_0: \mu_1 = \mu_2 = \mu_3$ by analyzing sample variances. One-way analysis of variance is used with data categorized with **one factor** (or **treatment**), so there is one characteristic used to separate the sample data into the different categories.

In the *F* test, two different estimates of the population variance are made.

The first estimate is called the **between-group variance**, and it involves finding the variance of the means.

The second estimate, the **within-group variance**, is made by computing the variance using all the data and is not affected by differences in the means.

If there is no difference in the means, the between-group variance will be approximately equal to the within-group variance, and the *F* test value will be close to 1; *do not reject null hypothesis*.

However, when the means differ significantly, the between-group variance will be much larger than the within-group variance; the F test will be significantly greater than 1; *reject null hypothesis*.

Given:

Number of Groups (**Factors**): kNumber of data in each group: nTotal sample size: N = k(n)

